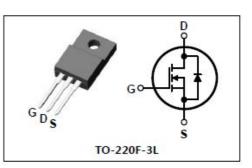
KODENSHI AUK

SWITCHING REGULATOR APPLICATIONS

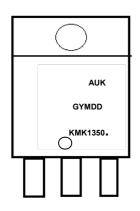

Features

Type NO

- High Voltage : BV_{DSS}=500V(Min.)
- Low Crss : Crss=23 pF(Typ.)
- Low gate charge : Qg=36nC(Typ.)
- Low R_{DS(on}): R_{DS(on})=0.48Ω(Max.)

Advanced N-Ch Power MOSFET

PIN Connection



KMK1350F KMK1350. TO-220F-3L

Marking

Marking Diagram

Ordering Information

• Da Lian

Column 1 : Manufacturer Column 2 : Production Information e.g.) GYMDD -. G : Factory management code -. YMDD : Date Code (year, month, date) Column 3 : Device Code

Package code

Absolute maximum ratings (Tc=25°C unless otherwise noted)

Characteristic	Symbol		Rati	ng Unit
Drain-source voltage	Vdss		500) V
Gate-source voltage	Vgss		±3	0 V
	Ŧ	Tc=25℃	13	A
Drain current (DC) *	ID	Tc=100℃	8	2 A
Drain current (Pulsed)*		Idm	52	A
Power dissipation		Pd	40	W
Avalanche current (Single) 2	Ias		13	А
Single pulsed avalanche energy 2	Eas		75	l mJ
Avalanche current (Repetitive) ①	Iar		13	А
Repetitive avalanche energy ①	Ear		19.	5 mJ
Junction temperature	Тл		TJ 150	
Storage temperature range	Tstg		-55~	°C

* Limited by maximum junction temperature

Characteristic		Symbol	Тур.	Max	Unit	
Thermal resistance	Junction-case	Rth(J-C)	-	3.12	°C/W	
	Junction-ambient	Rth(J-A)	-	62.5	°C /W	

Electrical Characteristics (Tc=25°C unless otherwise noted)

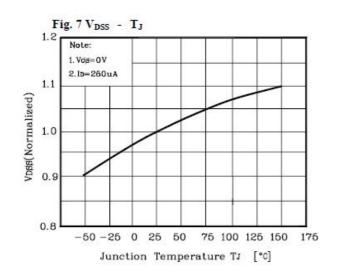
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BVDSS	ID=250uA, VGS=0V	500	-	-	V
Gate threshold voltage	$V_{GS(th)}$	ID=250uA, VDS=VGS	2.0	-	4.0	V
Drain-source cut-off current	Idss	VDS=500V, VGS=0V	-	-	1	uA
Gate leakage current	Igss	$V_{DS}=0V$, $V_{GS}=\pm 30V$	-	-	±100	nA
Drain-source on-resistance	RDS(on)	V _{GS} =10V, I _D =6.5A	-	0.4	0.48	Ω
Forward transfer conductance $\textcircled{4}$	g fs	V _{DS} =10V, I _D =6.5A	-	15	-	S
Input capacitance	Ciss		-	1960	2450	
Output capacitance	Coss	V _G s=0V, V _D s=25V f=1MHz	-	190	237	pF
Reverse transfer capacitance	Crss		-	23	29	
Turn-on delay time	td(on)		-	25	-	
Rise time	tr	VDD=250V, ID=13A	-	100	-	
Turn-off delay time	td(off)	Rg=25Ω ③④	-	130	-	20
Fall time	tr		-	100	-	ns
Total gate charge	Qg		-	36	45	
Gate-source charge	Qgs	V _{DS} =400V, V _{GS} =10V I _D =13A 34	-	8.3	-	nC
Gate-drain charge	\mathbf{Q}_{gd}		-	9.8	-	

Source-Drain Diode Ratings and Characteristics (Tc=25°C unless otherwise noted)

8					,	
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Source current (DC)	Is	Integral reverse diode	-	-	13	٨
Source current (Pulsed) ①	Isм	in the MOSFET	-	-	52	A
Forward voltage ④	Vsd	V _G s=0V, Is=13A	-	-	1.4	V
Reverse recovery time	trr	Is=13A, V _{GS} =0V	-	410	-	ns
Reverse recovery charge	Qrr	dIF/dt=100A/us	-	4.5	-	uC

Note ;

① Repetitive rating : Pulse width limited by maximum junction temperature


(2) L=0.8mH, IAs=13A, VDD=50V, RG=25 Ω , Starting TJ=25 °C

③ Pulse Test : Pulse width≤300us, Duty cycle≤2%

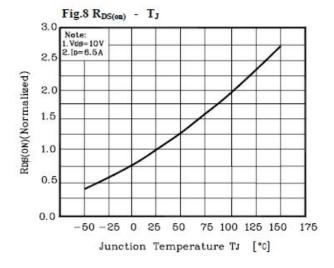

④ Essentially independent of operating temperature

Fig. 1 Ip - Vps Fig. 2 Ip - VGS 20 Note : Te=25 °C 1.Vps=10V 2.Pulse test 18 Vas 6.0V 5.5V 5.0V 4.5V 4.6V 3.6V Drain Current Ib [A] 16 Drain Current ID [A] Top 14 12 Buttom: 10 8 150°C 6 4 2 55°C 10 6 8 10 2 4 2 4 6 8 10 12 14 16 18 20 Drain - Source Voltage Vos [V] Gate-Source Voltage Vds [V] Fig. 3 RDS(on) - ID Fig. 4 Is - VSD 1.3 Note: 1.Vos=0V 2.Pulse test Note 1.Tc=25 C 2.Pulsed Reverse Drain Current Is [A] ON-Resistance Rps(on) [4] 1.1 10 0.9 150°C 0.7 5°C 0 10 Vdg=10V Vos=20V 0.5 10 0 0.5 0.7 0.9 1.1 1.3 1.5 0 5 10 15 20 25 30 35 Source-Drain Voltage Vsp [V] Drain Current ID [A] Fig.6 V_{GS} - Q_G Fig. 5 Capacitance - VDS 10000 Note Ip=13A Tc=25 c Gate-source voltage VGS [V] Ciss 10 111 1000 Capacitance [pF] VDD=400V Coss 100 Ħ б Crss 10 Note 1. Vot 0V 2. f=1MHz 3. Td=25°C 111 Ш -0 1 0.1 10 100 1 10 0 20 30 40 50 Total Gate Charge Qs [nC] Drain-Source Voltage Vos [V]

Electrical Characteristic Curves

Electrical Characteristic Curves

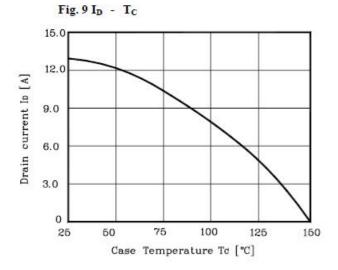


Fig. 10 Safe Operating Area

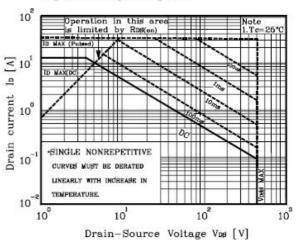


Fig. 11 Gate Charge Test Circuit & Waveform

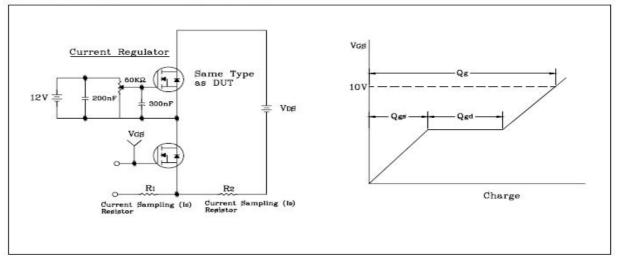
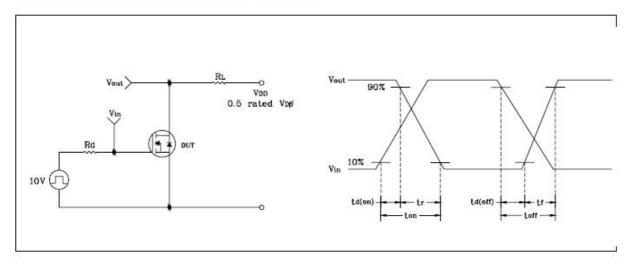
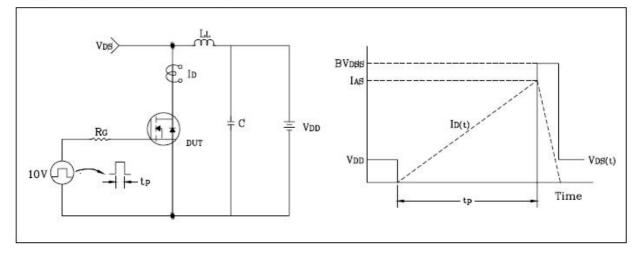
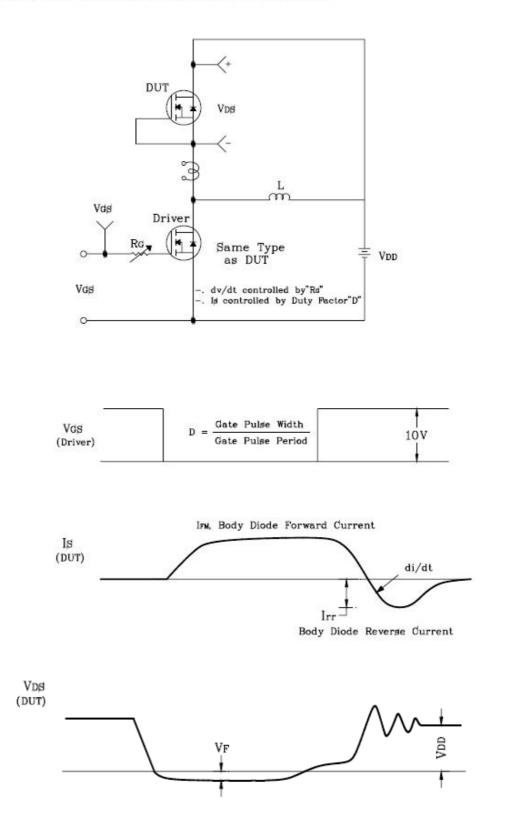
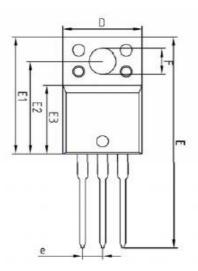
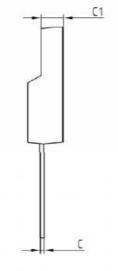
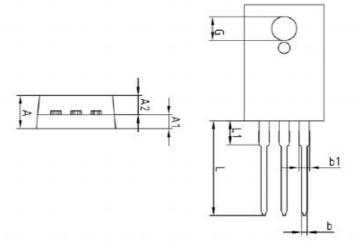





Fig. 12 Resistive Switching Test Circuit & Waveform






Fig. 14 Diode Reverse Recovery Time Test Circuit & Waveform

Outline Dimension

unit: mm

	MILLIMETERS				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE	
A	-	-	4.60		
A1	2.45	2.50	2.55		
A2	1.95	2.00	2.05		
ь	0.65	0.75	0.85		
b1	1.07	1.27	1.47		
С	0.40	0.50	0.60		
C1	2.70	2.80	2.90		
D	9.90	10.00	10.10		
E	28.00	-	28.60		
E1	15.50	15.60	15.70		
E2	12.30	12.40	12.50		
E3	9.15	9.20	9.25		
F	3.30	3.40	3.50		
G	3.10	3.20	3.30		
е					
L	12.40	-	13.00		
L1					

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice. ntioned in this publication are subject to change without notice.